Non-Harmonic Analysis of Weighted Pseudo-differential Operators

Aparajita Dasgupta
Indian Institute of Technology, Delhi

February 27, 2024

Outline

- Motivation
- Overview of Non-harmonic Analysis
- Global Symbolic Calculus
- Weighted Elliptic Operators and related results
- Applications

Motivation

- On \mathbb{R}^{n}, the Hörmander symbol class, $S_{\rho, \delta}^{m}, m \in \mathbb{R}, 0 \leq \rho, \delta \leq 1$,

$$
\left|\left(\partial_{\xi}^{\alpha} \partial_{x}^{\beta} \sigma\right)(x, \xi)\right| \leq C_{\alpha, \beta}(1+|\xi|)^{m-\rho|\alpha|+\delta|\beta|}
$$

- Using Mikjlin Hörmander Multiplier theorem it can be shown that pseudo-differential operators associated with $S_{1,0}^{0}$, is L^{p}-bounded. But for $\mathrm{p} \neq 2$, these operators with symbols in $\mathrm{S}_{\rho, 0}^{0}, 0<\rho<1$, are not L^{P}-bounded.
- Taylor introduced a new subclass, $M_{\rho, 0}^{m}$, of $S_{\rho, 0}^{0}$ to overcome this problem.
- Garello and Morando defined a weighted version of Taylor's one by replacing $\sqrt{1+|\xi|^{2}}$ by a more general positive weight function $\Lambda(\xi)$.

Weight Function

- Weight Function: $\Lambda \in C^{\infty}\left(\mathbb{R}^{n}\right)$, positive function,
i.

$$
C_{0}(1+|\xi|)^{\mu_{0}} \leq \Lambda(\xi) \leq C_{1}(1+|\xi|)^{\mu_{1}}
$$

$\xi \in \mathbb{R}^{n}, \mu_{0}, \mu_{1}, C_{0}$ and C_{1} are constants with $\mu_{0} \leq \mu_{1}$ and $C_{0} \leq C_{1}$.
ii. for all multi-indices $\alpha, \gamma \in \mathbb{N}_{0}^{n}$ with $\gamma_{j} \in\{0,1\}, j=0,1,2, \ldots, n$ there exist a positive constant $C_{\alpha, \gamma}$ such that

$$
\left.\mid \xi^{\gamma} \partial_{\xi}^{\alpha+\gamma} \Lambda\right)(\xi) \leq C_{\alpha, \gamma} \Lambda(\xi)^{1-\frac{1}{\mu}|\alpha|}
$$

$$
\mu \geq \mu_{1}, x, \xi \in \mathbb{R}^{n} .
$$

Example

For $n=2, \Lambda(\xi)=\sqrt{1+\xi_{1}^{6}+\xi_{1}^{4} \xi_{2}^{4}+\xi_{2}^{6}}$ satisfies with $\mu_{0}=3, \mu_{1}=4$ and $\mu=6$.

Weighted Symbol Class

Let $m \in \mathbb{R}$ and $\rho \in\left(0, \frac{1}{\mu}\right], \mu \geq \mu_{1}$

- $S_{\rho, \Lambda}^{m}: \sigma \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ such that

$$
\left|\left(\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma\right)(x, \xi)\right| \leq C_{\alpha, \beta} \Lambda(\xi)^{m-\rho|\beta|}
$$ for all multi-indices $\alpha, \beta, C_{\alpha, \beta}>0$, constant, $x, \xi \in \mathbb{R}^{n}$.

- $M_{\rho, \Lambda}^{m}: \xi^{\gamma}\left(\partial_{\xi}^{\gamma} \sigma\right)(x, \xi) \in S_{\rho, \Lambda}^{m}$, for all multi-indices γ with $\gamma_{j} \in\{0,1\}$, $j=1,2, \ldots, n$.
Weighted Pseudo-differential Operators:

$$
\left(T_{\sigma} \phi\right)(x)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} \sigma(x, \xi) \widehat{\phi}(\xi) d \xi, \quad x \in \mathbb{R}^{n}, \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

where

$$
\widehat{\phi}(\xi)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} \phi(x) d x, \quad \xi \in \mathbb{R}^{n}
$$

A Short Overview

- $T_{\sigma}: \mathcal{S} \rightarrow \mathcal{S}$ is a continuous linear mapping.
- Symbolic calculus has been developed earlier. [Garello + Morando (2005); Wong (2006)]

For $\sigma \in M_{\rho, \Lambda}^{m}, u \in \mathcal{S}^{\prime}, T_{\sigma} u: \mathcal{S} \rightarrow \mathbb{C}$ is defined by $\left(T_{\sigma} u\right)(\phi)=u\left(\overline{T_{\sigma}^{*} \bar{\phi}}\right)$.

- $T_{\sigma}: \mathcal{S}^{\prime} \rightarrow \mathcal{S}^{\prime}$ is a continuous linear mapping.
- M-elliptic: For $\sigma \in M_{\rho, \Lambda}^{m}, m \in \mathbb{R}, \exists C, R>0$ such that

$$
|\sigma(x, \xi)| \geq C \Lambda^{m}(\xi), \quad|\xi| \geq R
$$

- Parametrix: For $\sigma \in M_{\rho, \Lambda}^{m}$, M-elliptic, $\exists \tau \in M_{\rho, \Lambda}^{-m}$ such that

$$
T_{\sigma} T_{\tau}=I+R
$$

and

$$
T_{\tau} T_{\sigma}=I+S
$$

where R, S are pseudo-differential operators with symbols in $\cap_{k \in \mathbb{R}} M_{\rho, \wedge}^{k}$.

Weight Function on \mathbb{Z}

- Weight Function:

1. Λ is a weight function if there exist suitable $\mu_{0}, \mu_{1}>0, \mu_{0} \leq \mu_{1}$ and $C_{0}, C_{1}>0$ such that

$$
C_{0}(1+|k|)^{\mu_{0}} \leq \Lambda(k) \leq C_{1}(1+|k|)^{\mu_{1}}
$$

$k \in \mathbb{Z}$.
2. There exists a real constant μ such that $\mu \geq \mu_{1}$ and for all $\alpha, \gamma \in \mathbb{N}_{0}$ with $\gamma_{j} \in\{0,1\}, j=1,2, \ldots, n$, we can find a positive constant $C_{\alpha, \gamma}$ such that

$$
\left|k^{\gamma} \Delta_{k}^{\alpha+\gamma} \Lambda(k)\right| \leq C_{\alpha, \gamma} \wedge(k)^{1-\frac{1}{\mu} \alpha}, \quad k \in \mathbb{Z}
$$

Weighted Kohn-Nirenberg Symbol Class

 Let $m \in \mathbb{R}$ and $\rho \in\left(0, \frac{1}{\mu}\right]$.- Kohn-Nirenberg Symbol Class: $S_{\rho, \Lambda}^{m}(\mathbb{T} \times \mathbb{Z})$: Set of all functions $\sigma: \mathbb{T} \times \mathbb{Z} \rightarrow \mathbb{C}$ which are smooth in $x, \forall k \in \mathbb{Z}$ and for all $\alpha, \beta \in \mathbb{N}_{0}$ with $\gamma \in\{0,1\}$, there is a constant $C_{\alpha, \gamma}>0$ such that

$$
\left|\Delta_{k}^{\alpha} \partial_{x}^{\beta} \sigma(x, k)\right| \leq C_{\alpha, \beta} \Lambda(k)^{m-\rho \alpha} .
$$

- $M_{\rho, \Lambda}^{m}(\mathbb{T} \times \mathbb{Z}): \sigma: \mathbb{T} \times \mathbb{Z}$ such that,

$$
k^{\gamma} \Delta_{k}^{\gamma} \sigma(x, k) \in S_{\rho, \Lambda}^{m}(\mathbb{T} \times \mathbb{Z})
$$

- Pseudo-differential operator, T_{σ}, is defined as

$$
T_{\sigma} f(x)=\sum_{k \in \mathbb{Z}} e^{2 \pi i x \cdot k} \sigma(x, k) \widehat{f}(k),
$$

where $f \in C^{\infty}(\mathbb{T})$.

Boundedness

Theorem
Let $\sigma \in M_{\rho, \Lambda}^{0}(\mathbb{T} \times \mathbb{Z}),-\infty<m<\infty$. Then $T_{\sigma}: L^{p}(\mathbb{T}) \rightarrow L^{p}(\mathbb{T})$ is a bounded linear operator for $1<p<\infty$.

- Bessel potential, J_{s} : the Ψ-DO with symbol σ_{s} given by

$$
\sigma_{s}(k)=(\Lambda(k))^{-s}, \quad k \in \mathbb{Z}
$$

- Sobolev Space, $H_{\Lambda}^{s, p}=\left\{u \in \mathcal{D}^{\prime}(\mathbb{T}): J_{-s} u \in L^{p}(\mathbb{T})\right\}$. $H^{s, p}$ is a Banach space with norm $\|\cdot\|_{s, p}$ given by

$$
\|u\|_{s, p, \Lambda}=\left\|J_{-s} u\right\|_{L^{p}(\mathbb{T})}
$$

Theorem

Let $\sigma \in M_{\rho, \Lambda}^{m}(\mathbb{T} \times \mathbb{Z}),-\infty<m<\infty$. Then $T_{\sigma}: H^{s, p} \rightarrow H^{s-m, p}$ is a bounded linear operator for $1<p<\infty$.

Overview of global (harmonic) quantization theory

- Analysis on compact Lie groups. R.+Turunen, Pseudo-differential operators and symmetries, Birkhäuser, 2010
With further developments: Turunen, Wirth, Dasgupta, Garetto, Tikonov, Cardona, Kumar, and Kirillov among many others.
- Analysis on nilpotent Lie groups. Fischer+R., Quantization on nilpotent Lie groups, Birkhäuser, Progress in Math., 2016.
- Analysis on locally compact type 1 groups.Mantoiu+R., Pseudo-differential operators, Wigner transform and Weyl systems on type 1 locally compact groups, Doc. Math. 2017.
- Analysis on the lattice \mathbb{Z}^{n}. Botchway+Kibiti+R., JFA 2020.
- Global quantization on compact manifolds. R+Delgado, J. d'Analyse Math, 2018.
- Global analysis on locally compact groups, quantum groups. JFA 2020, +Majid CMP 2018.

Harmonic Analysis of Ψ-DOs

Pseudo-differential operators on \mathbb{R}^{n} [Kohn-Nirenberg, Hörmander, 1965]:

$$
\begin{gathered}
\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x, \quad T_{\sigma} f(x)=\int_{\mathbb{R}^{n}} e^{2 \pi i x \cdot \xi} \sigma(x, \xi) \widehat{f}(\xi) d \xi, \\
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-|\alpha|},\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}, \xi \in \mathbb{R}^{n} .
\end{gathered}
$$

ψ DOs on the torus $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$. Fourier coefficients with $\xi \in \mathbb{Z}^{n}$,

$$
\begin{gathered}
\widehat{f}(\xi)=\int_{\mathbb{T}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x, \quad T_{\sigma} f(x)=\sum_{\xi \in \mathbb{Z}^{n}} e^{2 \pi i x \cdot \xi} \sigma(x, \xi) \widehat{f}(\xi) \\
\left|\Delta_{\xi}^{\alpha} \partial_{x}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-|\alpha|}, \xi \in \mathbb{Z}^{n}
\end{gathered}
$$

[Agranovich 1990], [McLean 1991], [Turunen 2000], [R.+ Turunen, JFAA, 2010].

Harmonic Analysis of Ψ-DOs

Ψ DOs on a compact Lie group $G:[R+$ Turunen, Birkhäuser book, 2010]

$$
\begin{gathered}
\widehat{f}(\xi)=\int_{G} f(x) \xi(x)^{*} d x \\
T_{\sigma} f(x)=\sum_{[\xi] \in \widehat{G}} d_{\xi} \operatorname{Tr}(\xi(x) \sigma(x, \xi) \widehat{f}(\xi)),
\end{gathered}
$$

$\left\|\Delta_{\xi}^{\alpha} X^{\beta} \sigma(x, \xi)\right\|_{\text {op }} \leq C_{\alpha \beta}\langle\xi\rangle^{m-|\alpha|}, \quad \xi \in \widehat{G},\langle\xi\rangle=$ e.v., $\Delta_{\xi}=$ diff. op., \ldots

Harmonic and Non-Harmonic Analysis

- Harmonic Analysis: symmetries in the underlying space, e.g. working with $e^{2 \pi i x \cdot \xi}$ on \mathbb{T}^{n} with $\xi \in \mathbb{Z}^{n}$; more generally, working with representations of compact, nilpotent, or more general locally compact type 1 groups;
- Non-Harmonic Analysis: no symmetries in the underlysing space, e.r. working with $e^{2 \pi i x \cdot \xi}$ on \mathbb{T}^{n} with $\xi \notin \mathbb{Z}^{n}$;
Paley and Wiener (Fourier transforms in the complex domain, 1934) called this nonharmonic analysis; more generally, working with eigenfunction expansions for boundary value problems, or for compact and noncompact manifolds, with and without boundary;
Nonharmonic Analysis of boundary value problems. R.+ Tokmagambetov, IMRN 2016; MMNP 2017;
Compact manifolds with boundary: Delgado+R.+Tokmagambetov, JMPA, 2017.

Non-Harmonic Analysis Of BVPs

Setting: Let Ω be a smooth d-dimensional manifold with a boundary. Let L be a differential operator with smooth coefficients on Ω with boundary condition on $\partial \Omega$ (or we can say that L has some domain).
Assumption: the spectrum of L is discrete: $L u_{\xi}=\lambda_{\xi} u_{\xi}, \xi \in I$, and $\left\{u_{\xi}\right\}$ is a Riesz basis in $L^{2}(\Omega)$ (any element can be uniquely represented in this basis).
Note: L need not be self adjoint.
Adjoint problem: $L^{*} v_{\xi}=\overline{\lambda_{\xi}} v_{\xi}, \xi \in I$.
Bari(1951): u_{ξ} is a basis if and only if v_{ξ} is a basis.
Families $\left\{u_{\xi}\right\}$ and $\left\{v_{\xi}\right\}$ are biorthogonal: $\left(u_{\xi}, v_{\eta}\right)_{L^{2}(M)}=\delta_{\xi \eta}$.

Some examples

Classical Fourier analysis=decompositions with respect to eigenfunctions of $L=-i \frac{\partial}{\partial x}$, on $(0,1)$ with periodic boundary conditions $y(0)=y(1)$. Indeed, this is a self-adjoint operator with an orthonormal basis given by $e^{2 \pi i x \cdot \xi}$.
Let's change the above problem slightly.

- $\Omega=(0,1), L=-i \frac{\partial}{\partial x}$, hy $(0)=y(1), h>0$.

Titchmarsh 1926, Cartwright 1930: $\lambda_{\xi}=-i \ln h+2 \pi \xi, \quad \xi \in \mathbb{Z}$, biorthogonal system $u_{\xi}(x)=h^{x} e^{2 \pi i x \cdot \xi}, v_{\xi}(x)=h^{-x} e^{2 \pi i x \cdot \xi}$

- orthogonal examples: harmonic oscillator, anharmonic oscillator, Landau Hamiltonian, Hörmander's sums of squares on compact manifolds, and many others.
These can be made non-orthogonal by e.g adding some non-self-adjoint boundary conditions.

Global Fourier Analysis Associated to L and L^{*}

Recall: discrete spectrum $L u_{\xi}=\lambda_{\xi} u_{\xi}, L^{*} v_{\xi}=\lambda_{\xi} v_{\xi}, \xi \in I$ discrete set.
$C_{L}^{\infty}(\Omega)=\cap_{k=1}^{\infty} \operatorname{Dom}\left(L^{k}\right), C_{L^{*}}^{\infty}(\Omega)=\cap_{k=1}^{\infty} \operatorname{Dom}\left(\left(L^{*}\right)^{k}\right)$.
$\mathcal{D}_{L}^{\prime}(\Omega)=\mathcal{L}\left(C_{L^{*}}^{\infty}(\Omega), \mathbb{C}\right), \quad \mathcal{D}_{L^{*}}^{\prime}(\Omega)=\mathcal{L}\left(C_{L}^{\infty}(\Omega), \mathbb{C}\right)$,
$\mathcal{F}_{L} f(\xi)=\widehat{f}(\xi):=\int_{M} f(x) v_{\xi}(x) d x, \quad \mathcal{F}_{L^{*}} f(\xi)=\widehat{f}_{*}(\xi):=\int_{M} f(x) u_{\xi}(x) d x$.
If L is a differential operator of order m on Ω, we define $\langle\xi\rangle:=\left(1+\left|\lambda_{\xi}\right|\right)^{1 / m}$.
$\mathcal{S}(I)$: space of $|h(\xi)| \leq C\langle\xi\rangle^{-M}$ for all M.

- $\mathcal{F}_{L}: C_{L}^{\infty}(\Omega) \rightarrow \mathcal{S}(I)$ and $\mathcal{F}_{L^{*}}: C_{L^{*}}^{\infty}(\Omega) \rightarrow \mathcal{S}(I)$ are bijective homeomorphism with the Fourier inversion formulae

$$
f(x)=\sum_{\xi \in I} \widehat{f}(\xi) u_{\xi}(x)=\sum_{\xi \in I} \widehat{f}_{*}(\xi) v_{\xi}(x)
$$

- Extend to distributions, e.g. $\mathcal{F}_{L}: \mathcal{D}_{L}^{\prime}(\Omega) \rightarrow S^{\prime}(I)$

From the Riesz basis property, we have

$$
m^{2}\|f\|_{L^{2}}^{2} \leq \sum_{\xi \in I}|\widehat{f}(\xi)|^{2} \leq M\|f\|_{L^{2}}^{2}
$$

- Plancheral Indentities:

Define $(\mathrm{a}, \mathrm{b})_{\ell_{L}^{2}}:=\sum_{\xi \in I} a(\xi)\left(\mathcal{F}_{L^{*}} \circ \mathcal{F}_{L}^{-1} b\right)(\xi)$. Then

$$
\begin{aligned}
(f, g)_{L^{2}} & =(\widehat{f}, \widehat{g})_{\ell_{L}^{2}}=\sum_{\xi \in I} \widehat{f}(\xi) \widehat{g}_{*}(\xi) . \text { Similarly with } \ell_{L^{*}}^{2}, \text { so that } \\
\|f\|_{L^{2}} & =\|\widehat{f}\|_{\ell_{L}^{2}}=\left\|\widehat{f}_{*}\right\|_{\ell_{L^{*}}^{2}}
\end{aligned}
$$

- Sobolev Space: Let $f \in \mathcal{D}_{L}^{\prime}(\Omega) \cap \mathcal{D}_{L^{*}}^{\prime}(\Omega)$ and $s \in \mathbb{R}$. $f \in H_{L}^{s}(\Omega)$ if $\langle\xi\rangle^{s} \widehat{f}(\xi) \in \ell_{L}^{2}$. It is a Hilbert space with a norm

$$
\|f\|_{H_{L}^{s}(M)}:=\left(\sum_{\xi \in I}\langle\xi\rangle^{2 s} \widehat{f}(\xi) \widehat{f}_{*}(\xi)\right)^{1 / 2}
$$

We can further define $\ell_{L}^{p}, \ell_{L^{*}}^{p}$. These are interpolation spaces. Fourier transform satisfies Hausdroff- Young inequality and $\left(\ell_{L}^{p}\right)^{\prime}=\ell_{L^{*}}^{p^{\prime}}$. Here

$$
\|a\|_{\ell_{L}^{p}}=\left(\sum_{\xi \in I}|a(\xi)|^{p}\left\|u_{\xi}\right\|_{L \infty}^{2-p}\right)^{1 / p}, \quad \text { for } 1 \leq p \leq 2
$$

and

$$
\|a\|_{\ell_{L}^{p}}=\left(\sum_{\xi \in I}|a(\xi)|^{p}\left\|v_{\xi}\right\|_{L^{\infty}}^{2-p}\right)^{1 / p}, \quad \text { for } 2 \leq p \leq \infty
$$

Difference operators

Next question: How to define symbol classes? need some operations in ξ. A collection $q_{j} \in C^{\infty}(\Omega \times \Omega), j=1,2, \ldots, I$, of smooth functions on Ω is called L-strongly admissible if

- For every $x \in \Omega$, the multiplication by $q_{j}(x,$.$) is a continuous linear$ mapping on $C_{L}^{\infty}(\Omega)$, for all $j=1,2, \ldots, l$;
- $q_{j}(x, x)=0$ for all $j=1,2, \ldots, l$;
- $\left.\operatorname{rank}\left(\nabla_{y} q_{1}(x, y), \ldots, \nabla_{y} q_{l}(x, y)\right)\right|_{y=x}=\operatorname{dim} \Omega$;
- the diagonal in $\Omega \times \Omega$ is the only set when all of the q_{j} 's vanish:

$$
\cap_{j=1}^{\prime}\left\{(x, y) \in \Omega \times \Omega: q_{j}(x, y)=0\right\}=\{(x, x): x \in \Omega\} .
$$

We will use the multi-index notation

$$
q^{\alpha}(x, y):=q_{1}^{\alpha_{1}}(x, y) \ldots q_{l}^{\alpha_{1}}(x, y)
$$

Analogously, one defines L^{*}-strongly admissible collections.

Difference operators are not in general x-invariant

We define difference operator $\Delta_{q,(x)}^{\alpha}$ by any of the following equal expressions

$$
\Delta_{q,(x)}^{\alpha} \sigma(x, \xi)(\xi)=u_{\xi}^{-1}(x) \int_{\Omega} q^{\alpha}(x, y) K(x, y) u_{\xi}(y) d y,
$$

$K \in \mathcal{D}_{L}^{\prime}(\Omega \times \Omega)$, Schwartz Kernel of the operator T_{σ}. Analogously, the difference operator $\widetilde{\Delta}_{q,(x)}^{\alpha}$ acting on adjoint Fourier coefficients by

$$
\widetilde{\Delta}_{\tilde{q},(x)}^{\alpha} \sigma(x, \xi)(\xi)=v_{\xi}^{-1}(x) \int_{\Omega} \widetilde{q}^{\alpha}(x, y) \widetilde{K}(x, y) v_{\xi}(y) d y,
$$

$K \in \mathcal{D}_{L^{*}}^{\prime}(\Omega \times \Omega)$, Schwartz Kernel of the operator T_{σ}. The above definitions work if the eigenfunctions u_{ξ}, v_{ξ} do not have zeros. However, this assumption can be relaxed.(R.+ Tokmagambetov, MMNP 2017). Difference operators with respect to ξ also depend on x.

Symbol Classes $S_{\rho, \delta}^{m}(\Omega)$

Global symbol classes $S_{1,0}^{m}(\Omega)=S^{m}(\Omega)$ consisting of functions $\sigma(x, \xi)$ which are smooth in x and satisfy

$$
\left|\Delta_{(x)}^{\alpha} D_{x}^{(\beta)} \sigma(x, \xi)\right| \leq C\langle\xi\rangle^{m-|\alpha|}
$$

Also class $S_{\rho, \delta}^{m}(\Omega)$ with

$$
\left|\Delta_{(x)}^{\alpha} D_{x}^{(\beta)} \sigma(x, \xi)\right| \leq C\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}
$$

Some remarks:

- on $\mathbb{R}^{n}, \Delta_{(x)}^{\alpha}=\partial_{\xi}^{\alpha}$; on torus \mathbb{T}^{n}, these are difference operators Δ_{ξ}^{α} on $\mathbb{Z}^{n} \simeq \widehat{\mathbb{T}^{n}}$.
- for a Lie group G, difference operators were introduced and used on \widehat{G} to define global Hörmander classes $S^{m}(G \times \widehat{G})$. There, $G \widehat{G}$ can be viewed as a global phase space.
- Here the difference operators $\Delta_{(x)}^{\alpha}$ in ξ are x-dependent!. This is somewhat natural since we do not have any underlying invariance.

Weighted Symbol Class

Weight Function: $\Lambda \in C_{L}^{\infty}(\mathcal{I})$ is a weight function if there exists suitable $\mu_{0} \leq \mu_{1} \leq \mu$ and C_{0}, C_{1} such that for any multi-indices $\alpha, \gamma \geq 0$, $\gamma_{j} \in\{0,1\}, \forall j$, and $C_{\alpha, \gamma}>0$

$$
\begin{gathered}
C_{0}\langle\xi\rangle^{\mu_{0}} \leq \Lambda(\xi) \leq C_{1}\langle\xi\rangle^{\mu_{1}}, \quad \xi \in \mathcal{I} \\
\left|\langle\xi\rangle^{|\gamma|} \Delta_{(x)}^{\alpha+\gamma} \Lambda(\xi)\right| \leq C_{\alpha, \gamma} \Lambda(\xi)^{1-(1 / \mu)|\alpha|}, \quad \xi \in \mathcal{I} .
\end{gathered}
$$

Symbol classes related to weight functions $S_{\rho, 0, \wedge}^{m}, \rho \in(0,1 / \mu]$ consisting of functions smooth in x and satisfy

$$
\left|\Delta_{(x)}^{\alpha} D_{x}^{(\beta)} \sigma(x, \xi)\right| \leq C \Lambda(\xi)^{m-\rho|\alpha|}
$$

- For $\Lambda(\xi)=\left(1+\left|\lambda_{\xi}^{2}\right|\right)^{\frac{1}{2 m}}, \xi \in \mathcal{I}, S_{\rho, 0, \Lambda}^{m}=$ Hörmander class $S_{\rho, 0}^{m}, m \in \mathbb{R}$ and $\rho \in(0,1]$.

Weighted M-Symbol Class (ADG+VK+LM+SSM(@)

Weighted M-symbol class $M_{\rho, 0, \Lambda}^{m}$ to be the class of all such symbols which are smooth in x and satisfy

$$
\langle\xi\rangle^{|\gamma|} \Delta_{(x)}^{\gamma} \sigma(x, \xi) \in S_{\rho, 0, \Lambda}^{m},
$$

for all γ such that $\gamma_{j} \in\{0,1\}$.

- For any $m \in \mathbb{R}$ and $0<\rho \leq \frac{1}{\mu}$, there exist $N_{0}>0$, such that

$$
S_{\rho, 0, \Lambda}^{m-N_{0}} \subset M_{\rho, \Lambda}^{m} \subset S_{\rho, 0, \Lambda}^{m} .
$$

- The L-pseudo-differential operator is defined as

$$
\mathrm{T}_{\sigma} f(x)=\sum_{\xi \in \mathcal{I}} \sigma(x, \xi) \widehat{f}(\xi) u_{\xi}(x)
$$

for every $f \in C_{L}^{\infty}(\Omega)$.

L^{p}-boundedness, (ADG $\left.+\mathrm{VK}+\mathrm{LM}+\mathrm{SSM}\right)$

Theorem

For $\sigma \in M_{\rho, 0, \Lambda}^{0}(\Omega \times \mathcal{I})$, the operator $O p_{L}(\sigma): L^{p}(\Omega) \rightarrow L^{p}(\Omega)$ is a bounded operator.

- Weighted Sobolev Space: $H_{L, \Lambda}^{s, p}=\left\{w \in \mathcal{D}^{\prime}(\Omega): \Lambda(D)^{s} w \in L^{p}(\Omega)\right\}$. Norm, $\|w\|_{H_{L, \Lambda}^{s, p}}=\left\|\Lambda(D)^{s} w\right\|_{L^{p}(\Omega)}$, and $H_{L, \Lambda}^{s, p}$ is a Banach space.

Theorem

For $\sigma \in M_{\rho, 0, \Lambda}^{m}(\Omega \times \mathcal{I})$, the operator $\operatorname{Op}_{L}(\sigma): \mathcal{H}_{L, \Lambda}^{s, p} \rightarrow \mathcal{H}_{L, \Lambda}^{s-m, p}$ for any $s \in \mathbb{R}$ is a bounded operator.

Calculus

Theorem (Asymptotic sums of symbols, $\mathrm{ADG}+\mathrm{VK}+\mathrm{LM}+\mathrm{SSM}$)
Suppose that $\sigma_{j} \in M_{\rho, 0, \Lambda}^{m_{j}}$ for all $j \in \mathbb{N}_{0}$, where $\left\{m_{j}\right\}_{j=0}^{\infty} \subset \mathbb{R}$ be a sequence such that $m_{j}>m_{j+1}$, and $m_{j} \rightarrow-\infty$ as $j \rightarrow \infty$. Then there exists a L-symbol $\sigma \in M_{\rho, 0, \Lambda}^{m_{0}}$ such that for all $N \in \mathbb{N}_{0}$

$$
\sigma \sim \sum_{j=0}^{N-1} \sigma_{j}
$$

Theorem (Adjoint, ADG $+\mathrm{VK}+\mathrm{LM}+\mathrm{SSM}$)

Let $T: C_{L}^{\infty}(\Omega) \rightarrow C_{L}^{\infty}(\Omega)$ be a continuous linear operator such that its L-symbol $\sigma_{T} \in M_{\rho, 0, \Lambda}^{m}$. Then the adjoint T^{*} of T is a L^{*} -pseudo-differntial operator with L^{*}-symbol $\sigma_{T^{*}} \in M_{\rho, 0, \Lambda}^{m}$ having asymptotic expansion

$$
\sigma_{T^{*}}(x, \xi) \sim \sum_{\alpha} \frac{1}{\alpha!} \widetilde{\Delta}_{(x)}^{\alpha} D_{x}^{(\alpha)} \overline{\sigma_{T}(x, \xi)}
$$

Theorem (Product, ADG+VK+LM+SSM)

Let $m_{1}, m_{2} \in \mathbb{R}$. Let $A, B: C_{L}^{\infty}(\Omega) \rightarrow C_{L}^{\infty}(\Omega)$ be continuous linear operator such that $\sigma_{A} \in M_{\rho, 0, \Lambda}^{m_{1}}$ and $\sigma_{B} \in M_{\rho, 0, \wedge}^{m_{2}}$. Then the symbol of $A B$, $\sigma_{A B} \in M_{\rho, 0, \Lambda}^{m_{1}+m_{2}}$ having asymptotic expansion

$$
\sigma_{A B}(x, \xi) \sim \sum_{\alpha} \frac{1}{\alpha!}\left(\Delta_{(x)}^{\alpha} \sigma_{A}(x, \xi)\right) D_{x}^{(\alpha)} \sigma_{B}(x, \xi)
$$

where the asymptotic expansion means that for every $N \in \mathbb{N}$, we have

$$
\sigma_{A B}(x, \xi)-\sum_{|\alpha|<N} \frac{1}{\alpha!}\left(\Delta_{(x)}^{\alpha} \sigma_{A}(x, \xi)\right) D_{x}^{(\alpha)} \sigma_{B}(x, \xi) \in M_{\rho, 0, \Lambda}^{m_{1}+m_{2}-\rho N} .
$$

M-Elliptic Operators

Any $\sigma \in M_{\rho, 0, \Lambda}^{m}$ is M-elliptic if there exists constant $C>0$ and $R(>0) \in \mathbb{R}$ such that

$$
|\sigma(x, \xi)| \geq C(\Lambda(\xi))^{m}
$$

for $\left|\lambda_{\xi}\right| \geq R$.
Theorem (ADG $+\mathrm{VK}+\mathrm{LM}+\mathrm{SSM}$)
Let $A: C_{L}^{\infty}(\Omega) \rightarrow C_{L}^{\infty}(\Omega)$ continuous linear operator such that its L-symbol σ_{A} is M-elliptic. Then there exists a symbol $\sigma_{B} \in M_{\rho, 0, \Lambda}^{-m}$ such that

$$
B A=I+R
$$

and

$$
A B=I+S
$$

where the pseudo differential operators R, S are in $O p_{L} M^{-\infty}$.

Minimal and Maximal Operators

- $T_{\sigma}: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is closable for $\sigma \in M_{\rho, 0, \lambda}^{m}, m>0$
- Maximal Operator: $g \in \operatorname{Dom}\left(T_{\sigma, 1}\right)$ and $T_{\sigma, 1} g=f$ if and only if

$$
\left\langle g, T_{\sigma}^{*} \psi\right\rangle=\langle f, \psi\rangle
$$

where T_{σ}^{*} is the adjoint of T_{σ} and $\psi \in C^{\infty}(\bar{\Omega})$.
Results: ADG+VK+LM+SSM, arxiv 2023.

- For M-elliptic symbol $\sigma \in M_{\rho, 0, \Lambda}^{m}, \operatorname{Dom}\left(T_{\sigma, 0}\right)=H_{L, \Lambda}^{m, 2}$.
- $T_{\sigma, 0}=T_{\sigma, 1}$, for M-elliptic $\sigma \in M_{\rho, 0, \Lambda}^{m}, m>0$.
- Suppose $\sigma \in M_{\rho, 0, \Lambda}^{m}, m>0$ be M-elliptic and is independent of x. If $\lambda \in \mathbb{C}$ such that

$$
\sigma(\xi) \neq \lambda
$$

then $\quad \lambda \in \rho\left(T_{\sigma, 0}\right)$.

More Results (ADG $+\mathrm{VK}+\mathrm{LM}+\mathrm{SSM}$)

Gohberg's lemma: Let $1<p<\infty$. Assume Ω has a finite measure. Let $\sigma \in M_{\rho, 0, \Lambda}^{0}, 0<\rho \leq 1$. Then for all compact operators $K \in \mathcal{L}\left(L^{p}(\Omega)\right)$,

$$
\left\|T_{\sigma}-K\right\|_{\mathcal{L}\left(L^{p}(\Omega)\right)} \geq d_{\sigma}:=\limsup _{\langle\xi\rangle \rightarrow \infty}\left\{\sup _{x \in \Omega}|\sigma(x, \xi)|\right\}
$$

Compactness: Assume Ω has a finite measure. Let T_{σ} have symbol in $M_{\rho, 0, \Lambda}^{0}, 0<\rho \leq 1$. Then T_{σ} extends to a compact operator in $L^{2}(\Omega)$, if and only if $\quad \mathrm{d}_{\sigma}:=\limsup _{\langle\xi\rangle \rightarrow \infty}\left\{\sup _{x \in \Omega}|\sigma(x, \xi)|\right\}=0$.
Riesz Operator: Assume Ω has a finite measure. Let T_{σ} have symbol in $M_{\rho, 0, \Lambda^{\prime}}^{0}$. The T_{σ} is a Riesz operator on $L^{p}(\Omega), 1<p<\infty$ if and only if

$$
\mathrm{d}_{\sigma^{\prime}}:=\lim _{\langle\xi\rangle \rightarrow \infty}\left\{\sup _{x \in \Omega}|\sigma(x, \xi)|\right\}=0
$$

More Results (ADG $+\mathrm{VK}+\mathrm{LM}+\mathrm{SSM}$)

Functional Symbolic Calculus: Let $m>0,0<\rho \leq 1$ and $\sigma \in M_{\rho, 0, \Lambda}^{m}$ be a L-elliptic, $\sigma>0$. Then $\widehat{B}(x, \xi) \equiv \sigma(x, \xi)^{\frac{1}{2}}:=\exp \left(\frac{1}{2} \log (\sigma(x, \xi))\right) \in M_{\rho, 0, \Lambda}^{\frac{m}{2}}$ Gärding's Inequality: Let $T_{\sigma}: C_{L}^{\infty}(\Omega) \rightarrow \mathcal{D}_{L}^{\prime}(\Omega)$ with symbol $\sigma \in M_{\rho, 0, \Lambda}^{m}$, $m>0$ and $0<\rho \leq 1$. Also assume

$$
A(x, \xi):=\frac{1}{2}(\sigma(x, \xi)+\overline{\sigma(x, \xi)}), \quad(x, \xi) \in \Omega \times \mathcal{I}
$$

satisfies

$$
\left|(\Lambda(\xi))^{m} A(x, \xi)^{-1}\right| \leq C_{0}
$$

for some $C_{0}>0$. Then, there exists $C_{1}, C_{2}>0$ such that

$$
\operatorname{Re}(\sigma(x, D) u, u) \geq C_{1}\|u\|_{H_{L, \Lambda}^{\frac{m}{2}, 2}}-C_{2}\|u\|_{H_{L, \Lambda}^{0,2}}
$$

holds true for every $u \in C_{L}^{\infty}(\Omega)$.

Applications

Theorem

Let $\sigma \in M_{\rho, \Lambda}^{2 m}, m>0$, be such that it satisfies the condition given in the Gärding's inequality. Then for all $f \in L^{2}(\Omega)$ there exists $\lambda_{0} \in \mathbb{R}$, such that for all $\lambda \geq \lambda_{0}$,

$$
\left(T_{\sigma}+\lambda I\right) u=f
$$

on Ω has a unique strong solution $u \in L^{2}(\Omega)$.
Reference:

- A. Dasgupta, V. Kumar, L. Mohan, and S. S. Mondal, "Non-harmonic M-elliptic pseudo-differential operators on manifolds with boundary" submitted. https://arxiv.org/abs/2307.10825

References

- N. K. Bari, Biorthogonal systems and bases in Hilbert space, Moskov. Gos. Univ. Ucenye Zapiski Matematika, 148(4), 69-107, 1951.
- J. Delgado, M. Ruzhansky, and N. Tokmagambetov, Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary, J. Math. Pures Appl., 107(6), 758-783, 2017.
- C. Fefferman, L^{p}-bounds for pseudo-differential operators, Israel J. Math., 14, 413-417, 1973.
- L. Gårding, Dirichlet's problem for linear elliptic partial differential equations, Math. Scand., 1, 55-72, 1953.
- G. Garello and A. Morando, A class of L^{p} bounded pseudo-differential operators, In Progress in analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, pages 689-696, 2003.
- M. Ruzhansky and N. Tokmagambetov, Non-harmonic analysis of boundary value problems without WZ condition, Math. Model. Nat. Phenom., 12(1), 115-140, 2017.

Thank
 You!!

