Non-Harmonic Analysis of Weighted Pseudo-differential Operators

Aparajita Dasgupta Indian Institute of Technology, Delhi

February 27, 2024

adasgupta@maths.iitd.ac.in (IIT, Delhi)

Weighted Pseudo-differential Operators

1/33

Outline

- Motivation
- Overview of Non-harmonic Analysis
- Global Symbolic Calculus
- Weighted Elliptic Operators and related results
- Applications

Motivation

• On \mathbb{R}^n , the Hörmander symbol class, $S^m_{\rho,\delta}, m \in \mathbb{R}, 0 \le \rho, \delta \le 1$,

$$|(\partial^lpha_\xi\partial^eta_x\sigma)(x,\xi)|\leq \mathcal{C}_{lpha,eta}(1+|\xi|)^{m-
ho|lpha|+\delta|eta|}$$

- Using Mikjlin Hörmander Multiplier theorem it can be shown that pseudo-differential operators associated with $S_{1,0}^0$, is L^p -bounded. But for $p \neq 2$, these operators with symbols in $S_{\rho,0}^0$, $0 < \rho < 1$, are not L^p -bounded.
- Taylor introduced a new subclass, $M^m_{\rho,0}$, of $S^0_{\rho,0}$ to overcome this problem.
- Garello and Morando defined a weighted version of Taylor's one by replacing $\sqrt{1+|\xi|^2}$ by a more general positive weight function $\Lambda(\xi)$.

Weight Function

• Weight Function: $\Lambda \in C^{\infty}(\mathbb{R}^n)$, positive function,

i.
$$C_0(1+|\xi|)^{\mu_0} \leq \Lambda(\xi) \leq C_1(1+|\xi|)^{\mu_1},$$

 $\xi \in \mathbb{R}^n$, μ_0, μ_1, C_0 and C_1 are constants with $\mu_0 \le \mu_1$ and $C_0 \le C_1$.

ii. for all multi-indices $\alpha, \gamma \in \mathbb{N}_0^n$ with $\gamma_j \in \{0, 1\}, j = 0, 1, 2, ..., n$ there exist a positive constant $C_{\alpha, \gamma}$ such that

$$|\xi^{\gamma}\partial_{\xi}^{lpha+\gamma}\Lambda)(\xi)\leq \mathcal{C}_{lpha,\gamma}\Lambda(\xi)^{1-rac{1}{\mu}|lpha|},$$

 $\mu \ge \mu_1, x, \xi \in \mathbb{R}^n.$

Example

For
$$n = 2$$
, $\Lambda(\xi) = \sqrt{1 + \xi_1^6 + \xi_1^4 \xi_2^4 + \xi_2^6}$ satisfies with $\mu_0 = 3$, $\mu_1 = 4$ and $\mu = 6$.

Weighted Symbol Class

Let $m \in \mathbb{R}$ and $\rho \in (0, \frac{1}{\mu}], \mu \geq \mu_1$ • $S^m_{a,\Lambda}: \sigma \in C^\infty(\mathbb{R}^n imes \mathbb{R}^n)$ such that

$$|(\partial_x^{lpha}\partial_\xi^{eta}\sigma)(x,\xi)|\leq C_{lpha,eta}\Lambda(\xi)^{m-
ho|eta|},$$

for all multi-indices $\alpha, \beta, C_{\alpha,\beta} > 0$, constant, $x, \xi \in \mathbb{R}^n$.

• $M^m_{\rho,\Lambda}$: $\xi^{\gamma}(\partial_{\xi}^{\gamma}\sigma)(x,\xi) \in S^m_{\rho,\Lambda}$, for all multi-indices γ with $\gamma_j \in \{0,1\}$, $i = 1, 2, \dots, n$

Weighted Pseudo-differential Operators:

$$(T_{\sigma}\phi)(x) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{ix\cdot\xi} \sigma(x,\xi) \widehat{\phi}(\xi) d\xi, \ x \in \mathbb{R}^n, \ \phi \in \mathcal{S}(\mathbb{R}^n),$$

where

$$\widehat{\phi}(\xi) = (2\pi)^{-rac{n}{2}} \int_{\mathbb{R}^n} e^{-ix\cdot\xi} \phi(x) dx, \quad \xi \in \mathbb{R}^n.$$

A Short Overview

- $T_{\sigma}: S \to S$ is a continuous linear mapping.
- Symbolic calculus has been developed earlier. [Garello + Morando (2005); Wong (2006)]

For $\sigma \in M^m_{\rho,\Lambda}$, $u \in S'$, $T_{\sigma}u : S \to \mathbb{C}$ is defined by $(T_{\sigma}u)(\phi) = u(\overline{T^*_{\sigma}\phi})$.

- $T_{\sigma}: \mathcal{S}' \to \mathcal{S}'$ is a continuous linear mapping.
- M-elliptic: For $\sigma \in M^m_{\rho,\Lambda}, \ m \in \mathbb{R}, \ \exists \ C, R > 0$ such that

$$|\sigma(x,\xi)| \ge C\Lambda^m(\xi), \quad |\xi| \ge R.$$

• Parametrix: For $\sigma \in M^m_{\rho,\Lambda}$, M-elliptic, $\exists \ \tau \in M^{-m}_{\rho,\Lambda}$ such that

$$T_{\sigma}T_{\tau}=I+R$$

and

$$T_{\tau}T_{\sigma}=I+S$$

where R, S are pseudo-differential operators with symbols in $\bigcap_{k \in \mathbb{R}} M_{\rho,\Lambda}^k$.

adasgupta@maths.iitd.ac.in (IIT, Delhi)

Weighted Pseudo-differential Operators

Weight Function on $\mathbb Z$

- Weight Function:
 - 1. A is a weight function if there exist suitable $\mu_0, \mu_1 > 0$, $\mu_0 \le \mu_1$ and $C_0, C_1 > 0$ such that

$$C_0(1+|k|)^{\mu_0} \leq \Lambda(k) \leq C_1(1+|k|)^{\mu_1},$$

 $k \in \mathbb{Z}.$

2. There exists a real constant μ such that $\mu \ge \mu_1$ and for all $\alpha, \gamma \in \mathbb{N}_0$ with $\gamma_j \in \{0, 1\}, \ j = 1, 2, ..., n$, we can find a positive constant $C_{\alpha, \gamma}$ such that

$$\left|k^{\gamma}\Delta_{k}^{lpha+\gamma}\Lambda(k)
ight|\leq \mathcal{C}_{lpha,\gamma}\Lambda(k)^{1-rac{1}{\mu}lpha}, \ \ k\in\mathbb{Z}.$$

Weighted Kohn-Nirenberg Symbol Class

Let $m \in \mathbb{R}$ and $\rho \in \left(0, \frac{1}{\mu}\right]$.

• Kohn-Nirenberg Symbol Class:

$$\begin{split} & {\boldsymbol{S}}^m_{\rho,\Lambda}(\mathbb{T}\times\mathbb{Z}) \text{: Set of all functions } \sigma:\mathbb{T}\times\mathbb{Z}\to\mathbb{C} \text{ which are smooth in } \\ & x, \forall k\in\mathbb{Z} \text{ and for all } \alpha,\beta\in\mathbb{N}_0 \text{ with } \gamma\in\{0,1\}, \text{ there is a constant } \\ & {\boldsymbol{C}}_{\alpha,\gamma}>0 \text{ such that } \end{split}$$

$$\left|\Delta_k^lpha\partial_x^eta\sigma(x,k)
ight|\leq C_{lpha,eta}\Lambda(k)^{m-
holpha}.$$

• $M^m_{
ho,\Lambda}(\mathbb{T} imes\mathbb{Z}):\ \sigma:\mathbb{T} imes\mathbb{Z}$ such that,

 $k^{\gamma}\Delta_k^{\gamma}\sigma(x,k)\in \mathcal{S}^m_{
ho,\Lambda}(\mathbb{T} imes\mathbb{Z}).$

• Pseudo-differential operator, T_{σ} , is defined as

$$T_{\sigma}f(x) = \sum_{k\in\mathbb{Z}} e^{2\pi i x\cdot k} \sigma(x,k)\widehat{f}(k),$$

where $f \in C^{\infty}(\mathbb{T})$.

adasgupta@maths.iitd.ac.in (IIT, Delhi)

Boundedness

Theorem

Let $\sigma \in M^0_{\rho,\Lambda}(\mathbb{T} \times \mathbb{Z}), -\infty < m < \infty$. Then $T_{\sigma} : L^p(\mathbb{T}) \to L^p(\mathbb{T})$ is a bounded linear operator for 1 .

• Bessel potential, J_s : the Ψ -DO with symbol σ_s given by

$$\sigma_s(k) = (\Lambda(k))^{-s}, \ k \in \mathbb{Z}.$$

Sobolev Space, H^{s,p}_Λ = {u ∈ D'(T) : J_{-s}u ∈ L^p(T)}. H^{s,p} is a Banach space with norm ||.||_{s,p} given by

$$||u||_{s,p,\Lambda}=||J_{-s}u||_{L^p(\mathbb{T})}.$$

Theorem

Let $\sigma \in M^m_{\rho,\Lambda}(\mathbb{T} \times \mathbb{Z}), -\infty < m < \infty$. Then $T_{\sigma} : H^{s,p} \to H^{s-m,p}$ is a bounded linear operator for 1 .

Overview of global (harmonic) quantization theory

- Analysis on compact Lie groups. R.+Turunen, Pseudo-differential operators and symmetries, Birkhäuser, 2010
 With further developments: Turunen, Wirth, Dasgupta, Garetto, Tikonov, Cardona, Kumar, and Kirillov among many others.
- Analysis on nilpotent Lie groups. Fischer+R., Quantization on nilpotent Lie groups, Birkhäuser, Progress in Math., 2016.
- Analysis on locally compact type 1 groups.Mantoiu+R., Pseudo-differential operators, Wigner transform and Weyl systems on type 1 locally compact groups, Doc. Math. 2017.
- Analysis on the lattice \mathbb{Z}^n . Botchway+Kibiti+R., JFA 2020.
- Global quantization on compact manifolds. R+Delgado, J. d'Analyse Math, 2018.
- Global analysis on locally compact groups, quantum groups. JFA 2020, +Majid CMP 2018.

Harmonic Analysis of Ψ -DOs

Pseudo-differential operators on \mathbb{R}^n [Kohn-Nirenberg, Hörmander, 1965]:

$$\begin{split} \widehat{f}(\xi) &= \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} dx, \quad T_{\sigma} f(x) = \int_{\mathbb{R}^n} e^{2\pi i x \cdot \xi} \sigma(x, \xi) \widehat{f}(\xi) d\xi, \\ & \left| \partial_{\xi}^{\alpha} \partial_{x}^{\beta} \sigma(x, \xi) \right| \leq C_{\alpha, \beta} \langle \xi \rangle^{m - |\alpha|}, \ \langle \xi \rangle = (1 + |\xi|^2)^{1/2}, \ \xi \in \mathbb{R}^n. \end{split}$$

 Ψ **DOs on the torus** $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$. Fourier coefficients with $\xi \in \mathbb{Z}^n$,

$$\widehat{f}(\xi) = \int_{\mathbb{T}^n} f(x) e^{-2\pi i x \cdot \xi} dx, \quad T_{\sigma} f(x) = \sum_{\xi \in \mathbb{Z}^n} e^{2\pi i x \cdot \xi} \sigma(x, \xi) \widehat{f}(\xi)$$

$$\left|\Delta_{\xi}^{\alpha}\partial_{x}^{\beta}\sigma(x,\xi)\right| \leq C_{\alpha,\beta}\langle\xi\rangle^{m-|\alpha|}, \ \xi \in \mathbb{Z}^{n}$$

[Agranovich 1990], [McLean 1991], [Turunen 2000], [R.+ Turunen, JFAA, 2010].

11/33

 Ψ **DOs on a compact Lie group** G:[R+Turunen, Birkhäuser book, 2010]

$$\begin{split} \widehat{f}(\xi) &= \int_{\mathcal{G}} f(x)\xi(x)^* dx, \\ T_{\sigma}f(x) &= \sum_{[\xi]\in\widehat{G}} d_{\xi} \operatorname{Tr}\left(\xi(x)\sigma(x,\xi)\widehat{f}(\xi)\right), \\ |\Delta_{\xi}^{\alpha}X^{\beta}\sigma(x,\xi)||_{\operatorname{op}} &\leq C_{\alpha\beta}\langle\xi\rangle^{m-|\alpha|}, \ \xi\in\widehat{G}, \ \langle\xi\rangle = \operatorname{e.v.}, \ \Delta_{\xi} = \operatorname{diff.} \ \operatorname{op.}, \dots \end{split}$$

Harmonic and Non-Harmonic Analysis

- Harmonic Analysis: symmetries in the underlying space, e.g. working with e^{2πix·ξ} on Tⁿ with ξ ∈ Zⁿ; more generally, working with representations of compact, nilpotent, or more general locally compact type 1 groups;
- Non-Harmonic Analysis: no symmetries in the underlysing space, e.r. working with e^{2πix·ξ} on Tⁿ with ξ ∉ Zⁿ;
 Paley and Wiener (Fourier transforms in the complex domain, 1934)

Paley and Wiener (Fourier transforms in the complex domain, 1934) called this nonharmonic analysis;

more generally, working with eigenfunction expansions for boundary value problems, or for compact and noncompact manifolds, with and without boundary;

Nonharmonic Analysis of boundary value problems. R.+

Tokmagambetov, IMRN 2016; MMNP 2017;

Compact manifolds with boundary: Delgado+R.+Tokmagambetov, JMPA, 2017.

Setting: Let Ω be a smooth *d*-dimensional manifold with a boundary. Let L be a differential operator with smooth coefficients on Ω with boundary condition on $\partial\Omega$ (or we can say that L has some domain). Assumption: the spectrum of L is discrete: $Lu_{\xi} = \lambda_{\xi}u_{\xi}, \xi \in I$, and $\{u_{\xi}\}$ is a Riesz basis in $L^{2}(\Omega)$ (any element can be uniquely represented in this basis).

Note: L need not be self adjoint.

Adjoint problem: $L^* v_{\xi} = \overline{\lambda_{\xi}} v_{\xi}, \ \xi \in I$. Bari(1951): u_{ξ} is a basis if and only if v_{ξ} is a basis.

Families $\{u_{\xi}\}$ and $\{v_{\xi}\}$ are biorthogonal: $(u_{\xi}, v_{\eta})_{L^2(M)} = \delta_{\xi\eta}$.

Some examples

Classical Fourier analysis=decompositions with respect to eigenfunctions of $L = -i\frac{\partial}{\partial x}$, on (0, 1) with periodic boundary conditions y(0) = y(1). Indeed, this is a self-adjoint operator with an orthonormal basis given by $e^{2\pi i x \cdot \xi}$.

Let's change the above problem slightly.

- $\Omega = (0,1), L = -i\frac{\partial}{\partial x}, hy(0) = y(1), h > 0.$ Titchmarsh 1926, Cartwright 1930: $\lambda_{\xi} = -i \ln h + 2\pi\xi, \xi \in \mathbb{Z},$ biorthogonal system $u_{\xi}(x) = h^{x}e^{2\pi i x \cdot \xi}, v_{\xi}(x) = h^{-x}e^{2\pi i x \cdot \xi}$
- orthogonal examples: harmonic oscillator, anharmonic oscillator, Landau Hamiltonian, Hörmander's sums of squares on compact manifolds, and many others.

These can be made non-orthogonal by e.g adding some non-self-adjoint boundary conditions.

Global Fourier Analysis Associated to L and L^*

Recall: discrete spectrum $Lu_{\xi} = \lambda_{\xi}u_{\xi}, L^*v_{\xi} = \lambda_{\xi}v_{\xi}, \xi \in I$ discrete set. $C_L^{\infty}(\Omega) = \bigcap_{k=1}^{\infty} Dom(L^k), C_{L^*}^{\infty}(\Omega) = \bigcap_{k=1}^{\infty} Dom((L^*)^k).$ $\mathcal{D}'_L(\Omega) = \mathcal{L}(C_{L^*}^{\infty}(\Omega), \mathbb{C}), \mathcal{D}'_{L^*}(\Omega) = \mathcal{L}(C_L^{\infty}(\Omega), \mathbb{C}),$

$$\mathcal{F}_L f(\xi) = \widehat{f}(\xi) := \int_M f(x) v_{\xi}(x) dx, \quad \mathcal{F}_{L^*} f(\xi) = \widehat{f}_*(\xi) := \int_M f(x) u_{\xi}(x) dx.$$

If L is a differential operator of order m on Ω , we define $\langle \xi \rangle := (1 + |\lambda_{\xi}|)^{1/m}$. S(I): space of $|h(\xi)| \leq C \langle \xi \rangle^{-M}$ for all M.

• $\mathcal{F}_L : C_L^{\infty}(\Omega) \to \mathcal{S}(I)$ and $\mathcal{F}_{L^*} : C_{L^*}^{\infty}(\Omega) \to \mathcal{S}(I)$ are bijective homeomorphism with the Fourier inversion formulae

$$f(x) = \sum_{\xi \in I} \widehat{f}(\xi) u_{\xi}(x) = \sum_{\xi \in I} \widehat{f}_{*}(\xi) v_{\xi}(x).$$

• Extend to distributions, e.g. $\mathcal{F}_L : \mathcal{D}'_L(\Omega) \to S'(I)$

From the Riesz basis property, we have

$$m^2 ||f||_{L^2}^2 \leq \sum_{\xi \in I} |\widehat{f}(\xi)|^2 \leq M ||f||_{L^2}^2.$$

- Plancheral Indentities: Define $(a,b)_{\ell_L^2} := \sum_{\xi \in I} a(\xi) (\mathcal{F}_{L^*} \circ \mathcal{F}_L^{-1} b)(\xi)$. Then $(f,g)_{L^2} = (\widehat{f}, \widehat{g})_{\ell_L^2} = \sum_{\xi \in I} \widehat{f}(\xi) \widehat{g}_*(\xi)$. Similarly with $\ell_{L^*}^2$, so that $||f||_{L^2} = ||\widehat{f}||_{\ell_L^2} = ||\widehat{f}_*||_{\ell_{L^*}^2}$
- Sobolev Space: Let $f \in \mathcal{D}'_{L}(\Omega) \cap \mathcal{D}'_{L^{*}}(\Omega)$ and $s \in \mathbb{R}$. $f \in H^{s}_{L}(\Omega)$ if $\langle \xi \rangle^{s} \widehat{f}(\xi) \in \ell^{2}_{L}$. It is a Hilbert space with a norm

$$||f||_{H^{s}_{L}(M)} := \left(\sum_{\xi \in I} \langle \xi \rangle^{2s} \widehat{f}(\xi) \widehat{f}_{*}(\xi)\right)^{1/2}$$

We can further define ℓ_L^p , $\ell_{L^*}^p$. These are interpolation spaces. Fourier transform satisfies Hausdroff- Young inequality and $(\ell_L^p)' = \ell_{L^*}^{p'}$. Here

$$||a||_{\ell_L^p} = \left(\sum_{\xi \in I} |a(\xi)|^p ||u_\xi||_{L^\infty}^{2-p}\right)^{1/p}, \text{ for } 1 \le p \le 2,$$

and

$$||a||_{\ell_L^p} = \left(\sum_{\xi \in I} |a(\xi)|^p ||v_\xi||_{L^\infty}^{2-p}\right)^{1/p}, \text{ for } 2 \le p \le \infty$$

Difference operators

Next question: How to define symbol classes? need some operations in ξ . A collection $q_j \in C^{\infty}(\Omega \times \Omega), j = 1, 2, ..., I$, of smooth functions on Ω is called *L*-strongly admissible if

For every x ∈ Ω, the multiplication by q_j(x, .) is a continuous linear mapping on C[∞]_L(Ω), for all j = 1, 2, ..., l;

•
$$q_j(x,x) = 0$$
 for all $j = 1, 2, ..., l$;

- rank $(\nabla_y q_1(x, y), ..., \nabla_y q_l(x, y))|_{y=x} = \dim \Omega;$
- the diagonal in $\Omega \times \Omega$ is the only set when all of the q_j 's vanish: $\cap_{j=1}^{l} \{(x, y) \in \Omega \times \Omega : q_j(x, y) = 0\} = \{(x, x) : x \in \Omega\}.$

We will use the multi-index notation

$$q^{\alpha}(x,y) := q_1^{\alpha_1}(x,y) \dots q_l^{\alpha_1}(x,y).$$

Analogously, one defines L^* -strongly admissible collections.

Difference operators are not in general *x*-invariant

We define difference operator $\Delta^{\alpha}_{q,(\times)}$ by any of the following equal expressions

$$\Delta_{q,(x)}^{\alpha}\sigma(x,\xi)(\xi) = u_{\xi}^{-1}(x)\int_{\Omega}q^{\alpha}(x,y)K(x,y)u_{\xi}(y)dy,$$

 $K \in \mathcal{D}'_{L}(\Omega \times \Omega)$, Schwartz Kernel of the operator T_{σ} . Analogously, the difference operator $\widetilde{\Delta}^{\alpha}_{q,(x)}$ acting on adjoint Fourier coefficients by

$$\widetilde{\Delta}^{\alpha}_{\widetilde{q},(x)}\sigma(x,\xi)(\xi) = v_{\xi}^{-1}(x)\int_{\Omega}\widetilde{q}^{\alpha}(x,y)\widetilde{K}(x,y)v_{\xi}(y)dy,$$

 $K \in \mathcal{D}'_{L^*}(\Omega \times \Omega)$, Schwartz Kernel of the operator T_{σ} . The above definitions work if the eigenfunctions u_{ξ} , v_{ξ} do not have zeros. However, this assumption can be relaxed.(R.+ Tokmagambetov, MMNP 2017). Difference operators with respect to ξ also depend on x.

Symbol Classes $S^m_{\rho,\delta}(\Omega)$

Global symbol classes $S_{1,0}^m(\Omega) = S^m(\Omega)$ consisting of functions $\sigma(x,\xi)$ which are smooth in x and satisfy

$$\Delta^{\alpha}_{(x)} D^{(\beta)}_x \sigma(x,\xi) \Big| \leq C \langle \xi \rangle^{m-|\alpha|}$$

Also class $S^m_{
ho,\delta}(\Omega)$ with

$$|\Delta^{\alpha}_{(x)}D^{(\beta)}_{x}\sigma(x,\xi)| \leq C\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}.$$

Some remarks:

- on \mathbb{R}^n , $\Delta^{\alpha}_{(x)} = \partial^{\alpha}_{\xi}$; on torus \mathbb{T}^n , these are difference operators Δ^{α}_{ξ} on $\mathbb{Z}^n \simeq \widehat{\mathbb{T}^n}$.
- for a Lie group G, difference operators were introduced and used on \widehat{G} to define global Hörmander classes $S^m(G \times \widehat{G})$. There, $G\widehat{G}$ can be viewed as a global phase space.
- Here the difference operators $\Delta^{\alpha}_{(x)}$ in ξ are x-dependent!. This is somewhat natural since we do not have any underlying invariance.

Weighted Symbol Class

Weight Function: $\Lambda \in C_L^{\infty}(\mathcal{I})$ is a weight function if there exists suitable $\mu_0 \leq \mu_1 \leq \mu$ and C_0, C_1 such that for any multi-indices $\alpha, \gamma \geq 0$, $\gamma_j \in \{0, 1\}, \forall j$, and $C_{\alpha, \gamma} > 0$

$$egin{aligned} &C_0\langle\xi
angle^{\mu_0}\leq \Lambda(\xi)\leq C_1\langle\xi
angle^{\mu_1}, \ \ \xi\in\mathcal{I} \ & & & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & \ & & \ &$$

Symbol classes related to weight functions $S^m_{\rho,0,\Lambda}$, $\rho \in (0, 1/\mu]$ consisting of functions smooth in x and satisfy

$$\left|\Delta_{(x)}^{\alpha} D_x^{(\beta)} \sigma(x,\xi)\right| \leq C \Lambda(\xi)^{m-\rho|\alpha|}$$

• For $\Lambda(\xi) = (1 + |\lambda_{\xi}^2|)^{\frac{1}{2m}}, \xi \in \mathcal{I}, S^m_{\rho,0,\Lambda} = \text{Hörmander class } S^m_{\rho,0}, m \in \mathbb{R}$ and $\rho \in (0, 1]$.

Weighted M-Symbol Class (ADG+VK+LM+SSM

Weighted M-symbol class $M^m_{\rho,0,\Lambda}$ to be the class of all such symbols which are smooth in x and satisfy

$$\langle \xi \rangle^{|\gamma|} \Delta^{\gamma}_{(x)} \sigma(x,\xi) \in S^m_{\rho,0,\Lambda},$$

for all γ such that $\gamma_j \in \{0, 1\}$.

• For any $m \in \mathbb{R}$ and $0 < \rho \leq rac{1}{\mu}$, there exist $N_0 > 0$, such that

$$S^{m-N_0}_{
ho,0,\Lambda}\subset M^m_{
ho,\Lambda}\subset S^m_{
ho,0,\Lambda}.$$

• The L-pseudo-differential operator is defined as

 $\mathsf{T}_{\sigma}f(x) = \sum_{\xi \in \mathcal{I}} \sigma(x,\xi)\widehat{f}(\xi)u_{\xi}(x),$

for every $f \in C^{\infty}_{L}(\Omega)$.

L^p-boundedness, (ADG+VK+LM+SSM)

Theorem

For $\sigma \in M^0_{\rho,0,\Lambda}(\Omega \times \mathcal{I})$, the operator $Op_L(\sigma) : L^p(\Omega) \to L^p(\Omega)$ is a bounded operator.

• Weighted Sobolev Space: $H_{L,\Lambda}^{s,p} = \{w \in \mathcal{D}'(\Omega) : \Lambda(D)^s w \in L^p(\Omega)\}.$ Norm, $||w||_{H_{L,\Lambda}^{s,p}} = ||\Lambda(D)^s w||_{L^p(\Omega)}$, and $H_{L,\Lambda}^{s,p}$ is a Banach space.

Theorem

For $\sigma \in M^{m}_{\rho,0,\Lambda}(\Omega \times \mathcal{I})$, the operator $Op_{L}(\sigma) : \mathcal{H}^{s,p}_{L,\Lambda} \to \mathcal{H}^{s-m,p}_{L,\Lambda}$ for any $s \in \mathbb{R}$ is a bounded operator.

Calculus

Theorem (Asymptotic sums of symbols, ADG+VK+LM+SSM)

Suppose that $\sigma_j \in M^{m_j}_{\rho,0,\Lambda}$ for all $j \in \mathbb{N}_0$, where $\{m_j\}_{j=0}^{\infty} \subset \mathbb{R}$ be a sequence such that $m_j > m_{j+1}$, and $m_j \to -\infty$ as $j \to \infty$. Then there exists a L-symbol $\sigma \in M^{m_0}_{\rho,0,\Lambda}$ such that for all $N \in \mathbb{N}_0$ $\sigma \sim \sum_{i=0}^{N-1} \sigma_j$.

Theorem (Adjoint, ADG+VK+LM+SSM)

Let $T : C_L^{\infty}(\Omega) \to C_L^{\infty}(\Omega)$ be a continuous linear operator such that its L-symbol $\sigma_T \in M^m_{\rho,0,\Lambda}$. Then the adjoint T^* of T is a L^* -pseudo-differntial operator with L^* -symbol $\sigma_{T^*} \in M^m_{\rho,0,\Lambda}$ having asymptotic expansion

$$\sigma_{\mathcal{T}^*}(x,\xi) \sim \sum_{\alpha} \frac{1}{\alpha!} \widetilde{\Delta}^{\alpha}_{(x)} D_x^{(\alpha)} \overline{\sigma_{\mathcal{T}}(x,\xi)}$$

Theorem (Product, ADG+VK+LM+SSM)

Let $m_1, m_2 \in \mathbb{R}$. Let $A, B : C_L^{\infty}(\Omega) \to C_L^{\infty}(\Omega)$ be continuous linear operator such that $\sigma_A \in M_{\rho,0,\Lambda}^{m_1}$ and $\sigma_B \in M_{\rho,0,\Lambda}^{m_2}$. Then the symbol of AB, $\sigma_{AB} \in M_{\rho,0,\Lambda}^{m_1+m_2}$ having asymptotic expansion

$$\sigma_{AB}(x,\xi) \sim \sum_{\alpha} \frac{1}{\alpha!} \left(\Delta^{\alpha}_{(x)} \sigma_A(x,\xi) \right) D^{(\alpha)}_x \sigma_B(x,\xi),$$

where the asymptotic expansion means that for every $N \in \mathbb{N}$, we have

$$\sigma_{\mathcal{A}\mathcal{B}}(x,\xi) - \sum_{|\alpha| < \mathcal{N}} \frac{1}{\alpha!} \left(\Delta^{\alpha}_{(x)} \sigma_{\mathcal{A}}(x,\xi) \right) D^{(\alpha)}_{x} \sigma_{\mathcal{B}}(x,\xi) \in \mathcal{M}^{m_{1}+m_{2}-\rho\mathcal{N}}_{\rho,0,\Lambda}$$

M-Elliptic Operators

Any $\sigma \in M^m_{\rho,0,\Lambda}$ is M-elliptic if there exists constant C > 0 and $R(>0) \in \mathbb{R}$ such that

 $|\sigma(x,\xi)| \ge C(\Lambda(\xi))^m$

for $|\lambda_{\xi}| \geq R$.

Theorem (ADG+VK+LM+SSM)

Let $A : C_L^{\infty}(\Omega) \to C_L^{\infty}(\Omega)$ continuous linear operator such that its L-symbol σ_A is M-elliptic. Then there exists a symbol $\sigma_B \in M_{\rho,0,\Lambda}^{-m}$ such that

$$BA = I + R$$

and

AB = I + S,

where the pseudo differential operators R, S are in $Op_L M^{-\infty}$.

Minimal and Maximal Operators

- $T_{\sigma}: L^{2}(\Omega) \to L^{2}(\Omega)$ is closable for $\sigma \in M^{m}_{\rho,0,\lambda}, m > 0$
- Maximal Operator: $g \in Dom(T_{\sigma,1})$ and $T_{\sigma,1}g = f$ if and only if

$$\langle \mathbf{g}, T^*_{\sigma}\psi \rangle = \langle f, \psi \rangle,$$

where T_{σ}^* is the adjoint of T_{σ} and $\psi \in C^{\infty}(\overline{\Omega})$.

Results: ADG+VK+LM+SSM, arxiv 2023.

- For M-elliptic symbol $\sigma \in M^m_{\rho,0,\Lambda}$, $Dom(T_{\sigma,0}) = H^{m,2}_{L,\Lambda}$.
- $T_{\sigma,0} = T_{\sigma,1}$, for M-elliptic $\sigma \in M^m_{\rho,0,\Lambda}$, m > 0.
- Suppose $\sigma \in M^m_{\rho,0,\Lambda}, m > 0$ be M-elliptic and is independent of x. If $\lambda \in \mathbb{C}$ such that

$$\sigma(\xi) \neq \lambda,$$

then $\lambda \in \rho(T_{\sigma,0})$.

More Results (ADG+VK+LM+SSM)

Gohberg's lemma: Let $1 . Assume <math>\Omega$ has a finite measure. Let $\sigma \in M^0_{\rho,0,\Lambda}$, $0 < \rho \le 1$. Then for all compact operators $K \in \mathcal{L}(L^p(\Omega))$,

$$||T_{\sigma} - \mathcal{K}||_{\mathcal{L}(L^p(\Omega))} \geq d_{\sigma} := \limsup_{\langle \xi
angle o \infty} \left\{ \sup_{x \in \Omega} |\sigma(x,\xi)|
ight\}.$$

Compactness: Assume Ω has a finite measure. Let T_{σ} have symbol in $M^0_{\rho,0,\Lambda}$, $0 < \rho \leq 1$. Then T_{σ} extends to a compact operator in $L^2(\Omega)$, if

and only if
$$d_{\sigma} := \limsup_{\langle \xi \rangle \to \infty} \left\{ \sup_{x \in \Omega} |\sigma(x, \xi)| \right\} = 0.$$

Riesz Operator: Assume Ω has a finite measure. Let T_{σ} have symbol in $M^0_{\rho,0,\Lambda}$. The T_{σ} is a Riesz operator on $L^p(\Omega)$, 1 if and only if

$$\mathsf{d}_{\sigma'} := \lim_{\langle \xi
angle o \infty} \left\{ \sup_{x \in \Omega} |\sigma(x,\xi)|
ight\} = 0.$$

More Results (ADG+VK+LM+SSM)

Functional Symbolic Calculus: Let m > 0, $0 < \rho \le 1$ and $\sigma \in M^m_{\rho,0,\Lambda}$ be a *L*-elliptic , $\sigma > 0$. Then $\widehat{B}(x,\xi) \equiv \sigma(x,\xi)^{\frac{1}{2}} := \exp\left(\frac{1}{2}\log(\sigma(x,\xi))\right) \in M^{\frac{m}{2}}_{\rho,0,\Lambda}$ Gärding's Inequality: Let $T_{\sigma} : C^{\infty}_{L}(\Omega) \to \mathcal{D}'_{L}(\Omega)$ with symbol $\sigma \in M^m_{\rho,0,\Lambda}$, m > 0 and $0 < \rho \le 1$. Also assume

$$A(x,\xi) := rac{1}{2}(\sigma(x,\xi) + \overline{\sigma(x,\xi)}), \qquad (x,\xi) \in \Omega imes \mathcal{I}$$

satisfies

$$|(\Lambda(\xi))^m A(x,\xi)^{-1}| \le C_0$$

for some $C_0 > 0$. Then, there exists $C_1, C_2 > 0$ such that

$$\mathsf{Re}(\sigma(x,D)u,u) \ge C_1 ||u||_{H^{\frac{m}{2},2}_{L,\Lambda}} - C_2 ||u||_{H^{0,2}_{L,\Lambda}}$$

holds true for every $u \in C^{\infty}_{L}(\Omega)$.

Applications

Theorem

Let $\sigma \in M^{2m}_{\rho,\Lambda}$, m > 0, be such that it satisfies the condition given in the Gärding's inequality. Then for all $f \in L^2(\Omega)$ there exists $\lambda_0 \in \mathbb{R}$, such that for all $\lambda \geq \lambda_0$,

 $(T_{\sigma} + \lambda I)u = f$

on Ω has a unique strong solution $u \in L^2(\Omega)$.

Reference:

• A. Dasgupta, V. Kumar, L. Mohan, and S. S. Mondal,

"Non-harmonic M-elliptic pseudo-differential operators on manifolds with boundary" submitted. https://arxiv.org/abs/2307.10825

References

- N. K. Bari, Biorthogonal systems and bases in Hilbert space, Moskov. Gos. Univ. Ucenye Zapiski Matematika, 148(4), 69–107, 1951.
- J. Delgado, M. Ruzhansky, and N. Tokmagambetov, Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary, J. Math. Pures Appl., 107(6), 758-783, 2017.
- C. Fefferman, *L^p*-bounds for pseudo-differential operators, Israel J. Math., 14, 413-417, 1973.
- L. Gårding, Dirichlet's problem for linear elliptic partial differential equations, Math. Scand., 1, 55-72, 1953.
- G. Garello and A. Morando, A class of L^p bounded pseudo-differential operators, In Progress in analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, pages 689-696, 2003.
- M. Ruzhansky and N. Tokmagambetov, Non-harmonic analysis of boundary value problems without WZ condition, Math. Model. Nat. Phenom., 12(1), 115-140, 2017.

Thank You!!