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Motivation

On Rn, the Hörmander symbol class, Sm
ρ,δ, m ∈ R, 0 ≤ ρ, δ ≤ 1,

|(∂αξ ∂βx σ)(x , ξ)| ≤ Cα,β(1 + |ξ|)m−ρ|α|+δ|β|

Using Mikjlin Hörmander Multiplier theorem it can be shown that
pseudo-differential operators associated with S0

1,0, is L
p-bounded.

But for p̸= 2, these operators with symbols in S0ρ,0, 0 < ρ < 1, are
not Lp-bounded.

Taylor introduced a new subclass, Mm
ρ,0, of S

0
ρ,0 to overcome this

problem.

Garello and Morando defined a weighted version of Taylor’s one by
replacing

√
1 + |ξ|2 by a more general positive weight function Λ(ξ).
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Weight Function

Weight Function: Λ ∈ C∞(Rn), positive function,

i. C0(1 + |ξ|)µ0 ≤ Λ(ξ) ≤ C1(1 + |ξ|)µ1 ,

ξ ∈ Rn, µ0, µ1,C0 and C1 are constants with µ0 ≤ µ1 and C0 ≤ C1.

ii. for all multi-indices α, γ ∈ Nn
0 with γj ∈ {0, 1}, j = 0, 1, 2, ..., n there

exist a positive constant Cα,γ such that

|ξγ∂α+γ
ξ Λ)(ξ) ≤ Cα,γΛ(ξ)

1− 1
µ |α|,

µ ≥ µ1, x , ξ ∈ Rn.

Example

For n = 2, Λ(ξ) =
√
1 + ξ61 + ξ41ξ

4
2 + ξ62 satisfies with µ0 = 3, µ1 = 4 and

µ = 6.
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Weighted Symbol Class

Let m ∈ R and ρ ∈ (0, 1µ ], µ ≥ µ1

Sm
ρ,Λ : σ ∈ C∞(Rn × Rn) such that

|(∂αx ∂
β
ξ σ)(x , ξ)| ≤ Cα,βΛ(ξ)

m−ρ|β|,

for all multi-indices α, β, Cα,β > 0, constant, x , ξ ∈ Rn.

Mm
ρ,Λ: ξγ(∂γξ σ)(x , ξ) ∈ Sm

ρ,Λ, for all multi-indices γ with γj ∈ {0, 1},
j = 1, 2, ..., n.

Weighted Pseudo-differential Operators:

(Tσϕ)(x) = (2π)−
n
2

∫
Rn

e ix ·ξσ(x , ξ)ϕ̂(ξ)dξ, x ∈ Rn, ϕ ∈ S(Rn),

where

ϕ̂(ξ) = (2π)−
n
2

∫
Rn

e−ix ·ξϕ(x)dx , ξ ∈ Rn.
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A Short Overview

Tσ : S → S is a continuous linear mapping.

Symbolic calculus has been developed earlier. [Garello + Morando
(2005); Wong (2006)]

For σ ∈ Mm
ρ,Λ, u ∈ S ′, Tσu : S → C is defined by (Tσu)(ϕ) = u(T ∗

σ ϕ̄).

Tσ : S ′ → S ′ is a continuous linear mapping.

M-elliptic: For σ ∈ Mm
ρ,Λ, m ∈ R, ∃ C ,R > 0 such that

|σ(x , ξ)| ≥ CΛm(ξ), |ξ| ≥ R.

Parametrix: For σ ∈ Mm
ρ,Λ, M-elliptic, ∃ τ ∈ M−m

ρ,Λ such that

TσTτ = I + R

and
TτTσ = I + S ,

where R, S are pseudo-differential operators with symbols in
∩k∈RM

k
ρ,Λ.
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Weight Function on Z

Weight Function:

1. Λ is a weight function if there exist suitable µ0, µ1 > 0, µ0 ≤ µ1 and
C0,C1 > 0 such that

C0(1 + |k |)µ0 ≤ Λ(k) ≤ C1(1 + |k|)µ1 ,

k ∈ Z.
2. There exists a real constant µ such that µ ≥ µ1 and for all α, γ ∈ N0

with γj ∈ {0, 1}, j = 1, 2, ..., n, we can find a positive constant Cα,γ

such that ∣∣kγ∆α+γ
k Λ(k)

∣∣ ≤ Cα,γΛ(k)
1− 1

µα, k ∈ Z.
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Weighted Kohn-Nirenberg Symbol Class

Let m ∈ R and ρ ∈
(
0, 1µ

]
.

Kohn-Nirenberg Symbol Class:
Sm
ρ,Λ(T× Z): Set of all functions σ : T× Z → C which are smooth in

x , ∀k ∈ Z and for all α, β ∈ N0 with γ ∈ {0, 1}, there is a constant
Cα,γ > 0 such that∣∣∣∆α

k ∂
β
x σ(x , k)

∣∣∣ ≤ Cα,βΛ(k)
m−ρα.

Mm
ρ,Λ(T× Z) : σ : T× Z such that,

kγ∆γ
kσ(x , k) ∈ Sm

ρ,Λ(T× Z).

Pseudo-differential operator, Tσ, is defined as

Tσf (x) =
∑
k∈Z

e2πix ·kσ(x , k)f̂ (k),

where f ∈ C∞(T).
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Boundedness

Theorem

Let σ ∈ M0
ρ,Λ(T× Z), −∞ < m <∞. Then Tσ : Lp(T) → Lp(T) is a

bounded linear operator for 1 < p <∞.

Bessel potential, Js : the Ψ-DO with symbol σs given by

σs(k) = (Λ(k))−s , k ∈ Z.

Sobolev Space, Hs,p
Λ = {u ∈ D′(T) : J−su ∈ Lp(T)}. Hs,p is a Banach

space with norm ||.||s,p given by

||u||s,p,Λ = ||J−su||Lp(T).

Theorem

Let σ ∈ Mm
ρ,Λ(T× Z), −∞ < m <∞. Then Tσ : Hs,p → Hs−m,p is a

bounded linear operator for 1 < p <∞.
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Overview of global (harmonic) quantization theory

Analysis on compact Lie groups. R.+Turunen, Pseudo-differential
operators and symmetries, Birkhäuser, 2010
With further developments: Turunen, Wirth, Dasgupta, Garetto,
Tikonov, Cardona, Kumar, and Kirillov among many others.

Analysis on nilpotent Lie groups. Fischer+R., Quantization on
nilpotent Lie groups, Birkhäuser, Progress in Math., 2016.

Analysis on locally compact type 1 groups.Mantoiu+R.,
Pseudo-differential operators, Wigner transform and Weyl systems on
type 1 locally compact groups, Doc. Math. 2017.

Analysis on the lattice Zn. Botchway+Kibiti+R., JFA 2020.

Global quantization on compact manifolds. R+Delgado, J. d’Analyse
Math, 2018.

Global analysis on locally compact groups, quantum groups. JFA
2020, +Majid CMP 2018.
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Harmonic Analysis of Ψ-DOs

Pseudo-differential operators on Rn [Kohn-Nirenberg, Hörmander,
1965]:

f̂ (ξ) =

∫
Rn

f (x)e−2πix ·ξdx , Tσf (x) =

∫
Rn

e2πix ·ξσ(x , ξ)f̂ (ξ)dξ,

∣∣∣∂αξ ∂βx σ(x , ξ)∣∣∣ ≤ Cα,β⟨ξ⟩m−|α|, ⟨ξ⟩ = (1 + |ξ|2)1/2, ξ ∈ Rn.

ΨDOs on the torus Tn = Rn/Zn. Fourier coefficients with ξ ∈ Zn,

f̂ (ξ) =

∫
Tn

f (x)e−2πix ·ξdx , Tσf (x) =
∑
ξ∈Zn

e2πix ·ξσ(x , ξ)f̂ (ξ)

∣∣∣∆α
ξ ∂

β
x σ(x , ξ)

∣∣∣ ≤ Cα,β⟨ξ⟩m−|α|, ξ ∈ Zn

[Agranovich 1990], [McLean 1991], [Turunen 2000], [R.+ Turunen, JFAA,
2010].
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Harmonic Analysis of Ψ-DOs

ΨDOs on a compact Lie group G :[R+Turunen, Birkhäuser book, 2010]

f̂ (ξ) =

∫
G
f (x)ξ(x)∗dx ,

Tσf (x) =
∑
[ξ]∈Ĝ

dξTr
(
ξ(x)σ(x , ξ)f̂ (ξ)

)
,

||∆α
ξ X

βσ(x , ξ)||op ≤ Cαβ⟨ξ⟩m−|α|, ξ ∈ Ĝ , ⟨ξ⟩ = e.v., ∆ξ = diff. op., ...
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Harmonic and Non-Harmonic Analysis

Harmonic Analysis: symmetries in the underlying space, e.g. working
with e2πix ·ξ on Tn with ξ ∈ Zn;
more generally, working with representations of compact, nilpotent, or
more general locally compact type 1 groups;

Non-Harmonic Analysis: no symmetries in the underlysing space, e.r.
working with e2πix ·ξ on Tn with ξ /∈ Zn;
Paley and Wiener (Fourier transforms in the complex domain, 1934)
called this nonharmonic analysis;
more generally, working with eigenfunction expansions for boundary
value problems, or for compact and noncompact manifolds, with and
without boundary;
Nonharmonic Analysis of boundary value problems. R.+
Tokmagambetov, IMRN 2016; MMNP 2017;
Compact manifolds with boundary: Delgado+R.+Tokmagambetov,
JMPA, 2017.
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Non-Harmonic Analysis Of BVPs

Setting: Let Ω be a smooth d-dimensional manifold with a boundary. Let
L be a differential operator with smooth coefficients on Ω with boundary
condition on ∂Ω(or we can say that L has some domain).
Assumption: the spectrum of L is discrete: Luξ = λξuξ, ξ ∈ I , and {uξ} is
a Riesz basis in L2(Ω) (any element can be uniquely represented in this
basis).
Note: L need not be self adjoint.

Adjoint problem: L∗vξ = λξvξ, ξ ∈ I .
Bari(1951): uξ is a basis if and only if vξ is a basis.

Families {uξ} and {vξ} are biorthogonal: (uξ, vη)L2(M) = δξη.
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Some examples

Classical Fourier analysis=decompositions with respect to eigenfunctions
of L = −i ∂

∂x , on (0, 1) with periodic boundary conditions y(0) = y(1).
Indeed, this is a self-adjoint operator with an orthonormal basis given by
e2πix ·ξ.
Let’s change the above problem slightly.

Ω = (0, 1), L = −i ∂
∂x , hy(0) = y(1), h > 0.

Titchmarsh 1926, Cartwright 1930: λξ = −i ln h + 2πξ, ξ ∈ Z,
biorthogonal system uξ(x) = hxe2πix ·ξ, vξ(x) = h−xe2πix ·ξ

orthogonal examples: harmonic oscillator, anharmonic oscillator,
Landau Hamiltonian, Hörmander’s sums of squares on compact
manifolds, and many others.
These can be made non-orthogonal by e.g adding some
non-self-adjoint boundary conditions.
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Global Fourier Analysis Associated to L and L∗

Recall: discrete spectrum Luξ = λξuξ, L
∗vξ = λξvξ, ξ ∈ I discrete set.

C∞
L (Ω) = ∩∞

k=1Dom(Lk), C∞
L∗ (Ω) = ∩∞

k=1Dom((L∗)k).
D′

L(Ω) = L(C∞
L∗ (Ω),C), D′

L∗(Ω) = L(C∞
L (Ω),C),

FLf (ξ) = f̂ (ξ) :=

∫
M
f (x)vξ(x)dx , FL∗f (ξ) = f̂∗(ξ) :=

∫
M
f (x)uξ(x)dx .

If L is a differential operator of order m on Ω, we define
⟨ξ⟩ := (1 + |λξ|)1/m.
S(I ) : space of |h(ξ)| ≤ C ⟨ξ⟩−M for all M.

FL : C∞
L (Ω) → S(I ) and FL∗ : C∞

L∗ (Ω) → S(I ) are bijective
homeomorphism with the Fourier inversion formulae

f(x)=
∑
ξ∈I

f̂ (ξ)uξ(x) =
∑
ξ∈I

f̂∗(ξ)vξ(x).

Extend to distributions, e.g. FL : D′
L(Ω) → S ′(I )
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From the Riesz basis property, we have

m2||f ||2L2 ≤
∑
ξ∈I

|f̂ (ξ)|2 ≤ M||f ||2L2 .

Plancheral Indentities:
Define (a,b)ℓ2L

:=
∑
ξ∈I

a(ξ)(FL∗ ◦ F−1
L b)(ξ). Then

(f , g)L2 = (f̂ , ĝ)ℓ2L
=

∑
ξ∈I

f̂ (ξ)ĝ∗(ξ). Similarly with ℓ2L∗ , so that

||f ||L2 = ||f̂ ||ℓ2L = ||f̂∗||ℓ2
L∗

Sobolev Space: Let f ∈ D′
L(Ω) ∩ D′

L∗(Ω) and s ∈ R.
f ∈ Hs

L(Ω) if ⟨ξ⟩s f̂ (ξ) ∈ ℓ2L. It is a Hilbert space with a norm

||f ||Hs
L(M) :=

∑
ξ∈I

⟨ξ⟩2s f̂ (ξ)f̂∗(ξ)

1/2
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We can further define ℓpL, ℓ
p
L∗ . These are interpolation spaces. Fourier

transform satisfies Hausdroff- Young inequality and (ℓpL)
′ = ℓp

′

L∗ . Here

||a||ℓpL =

∑
ξ∈I

|a(ξ)|p||uξ||2−p
L∞

1/p

, for 1 ≤ p ≤ 2,

and

||a||ℓpL =

∑
ξ∈I

|a(ξ)|p||vξ||2−p
L∞

1/p

, for 2 ≤ p ≤ ∞.
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Difference operators

Next question: How to define symbol classes? need some operations in ξ.
A collection qj ∈ C∞(Ω× Ω), j = 1, 2, ..., l , of smooth functions on Ω is
called L−strongly admissible if

For every x ∈ Ω, the multiplication by qj(x , .) is a continuous linear
mapping on C∞

L (Ω), for all j = 1, 2, ..., l ;

qj(x , x) = 0 for all j = 1, 2, ..., l ;

rank(∇yq1(x , y), ...,∇yql(x , y))|y=x = dimΩ;

the diagonal in Ω× Ω is the only set when all of the qj ’s vanish:

∩l
j=1{(x , y) ∈ Ω× Ω : qj(x , y) = 0} = {(x , x) : x ∈ Ω}.

We will use the multi-index notation

qα(x , y) := qα1
1 (x , y)...qα1

l (x , y).

Analogously, one defines L∗-strongly admissible collections.
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Difference operators are not in general x-invariant

We define difference operator ∆α
q,(x) by any of the following equal

expressions

∆α
q,(x)σ(x , ξ)(ξ) = u−1

ξ (x)

∫
Ω
qα(x , y)K (x , y)uξ(y)dy ,

K ∈ D′
L(Ω× Ω), Schwartz Kernel of the operator Tσ. Analogously, the

difference operator ∆̃α
q,(x) acting on adjoint Fourier coefficients by

∆̃α
q̃,(x)σ(x , ξ)(ξ) = v−1

ξ (x)

∫
Ω
q̃α(x , y)K̃ (x , y)vξ(y)dy ,

K ∈ D′
L∗(Ω× Ω), Schwartz Kernel of the operator Tσ. The above

definitions work if the eigenfunctions uξ, vξ do not have zeros. However,
this assumption can be relaxed.(R.+ Tokmagambetov, MMNP 2017).
Difference operators with respect to ξ also depend on x .
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Symbol Classes Sm
ρ,δ(Ω)

Global symbol classes Sm
1,0(Ω) = Sm(Ω) consisting of functions σ(x , ξ)

which are smooth in x and satisfy∣∣∣∆α
(x)D

(β)
x σ(x , ξ)

∣∣∣ ≤ C ⟨ξ⟩m−|α|

Also class Sm
ρ,δ(Ω) with

|∆α
(x)D

(β)
x σ(x , ξ)| ≤ C ⟨ξ⟩m−ρ|α|+δ|β|.

Some remarks:

on Rn, ∆α
(x) = ∂αξ ; on torus Tn, these are difference operators ∆α

ξ on

Zn ≃ T̂n.

for a Lie group G , difference operators were introduced and used on
Ĝ to define global Hörmander classes Sm(G × Ĝ ). There, GĜ can be
viewed as a global phase space.

Here the difference operators ∆α
(x) in ξ are x-dependent!. This is

somewhat natural since we do not have any underlying invariance.
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Weighted Symbol Class

Weight Function: Λ ∈ C∞
L (I) is a weight function if there exists suitable

µ0 ≤ µ1 ≤ µ and C0,C1 such that for any multi-indices α, γ ≥ 0,
γj ∈ {0, 1}, ∀j , and Cα,γ > 0

C0⟨ξ⟩µ0 ≤ Λ(ξ) ≤ C1⟨ξ⟩µ1 , ξ ∈ I∣∣∣⟨ξ⟩|γ|∆α+γ
(x) Λ(ξ)

∣∣∣ ≤ Cα,γΛ(ξ)
1−(1/µ)|α|, ξ ∈ I.

Symbol classes related to weight functions Sm
ρ,0,Λ, ρ ∈ (0, 1/µ] consisting

of functions smooth in x and satisfy∣∣∣∆α
(x)D

(β)
x σ(x , ξ)

∣∣∣ ≤ CΛ(ξ)m−ρ|α|

For Λ(ξ) = (1+ |λ2ξ |)
1
2m , ξ ∈ I, Sm

ρ,0,Λ = Hörmander class Sm
ρ,0, m ∈ R

and ρ ∈ (0, 1].
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Weighted M-Symbol Class (ADG+VK+LM+SSM)

Weighted M-symbol class Mm
ρ,0,Λ to be the class of all such symbols which

are smooth in x and satisfy

⟨ξ⟩|γ|∆γ
(x)σ(x , ξ) ∈ Sm

ρ,0,Λ,

for all γ such that γj ∈ {0, 1}.
For any m ∈ R and 0 < ρ ≤ 1

µ , there exist N0 > 0, such that

Sm−N0
ρ,0,Λ ⊂ Mm

ρ,Λ ⊂ Sm
ρ,0,Λ.

The L-pseudo-differential operator is defined as

Tσf (x) =
∑
ξ∈I

σ(x , ξ)f̂ (ξ)uξ(x),

for every f ∈ C∞
L (Ω).
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Lp-boundedness, (ADG+VK+LM+SSM)

Theorem

For σ ∈ M0
ρ,0,Λ(Ω× I), the operator OpL(σ) : L

p(Ω) → Lp(Ω) is a
bounded operator.

Weighted Sobolev Space: Hs,p
L,Λ = {w ∈ D′(Ω) : Λ(D)sw ∈ Lp(Ω)}.

Norm, ||w ||Hs,p
L,Λ

= ||Λ(D)sw ||Lp(Ω), and Hs,p
L,Λ is a Banach space.

Theorem

For σ ∈ Mm
ρ,0,Λ(Ω× I), the operator OpL(σ) : Hs,p

L,Λ → Hs−m,p
L,Λ for any

s ∈ R is a bounded operator.
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Calculus

Theorem (Asymptotic sums of symbols, ADG+VK+LM+SSM)

Suppose that σj ∈ M
mj

ρ,0,Λ for all j ∈ N0, where {mj}∞j=0 ⊂ R be a sequence
such that mj > mj+1, and mj → −∞ as j → ∞. Then there exists a
L-symbol σ ∈ Mm0

ρ,0,Λ such that for all N ∈ N0

σ ∼
∑N−1

j=0 σj .

Theorem (Adjoint, ADG+VK+LM+SSM)

Let T : C∞
L (Ω) → C∞

L (Ω) be a continuous linear operator such that its
L-symbol σT ∈ Mm

ρ,0,Λ. Then the adjoint T ∗ of T is a L∗-
pseudo-differntial operator with L∗-symbol σT∗ ∈ Mm

ρ,0,Λ having
asymptotic expansion

σT∗(x , ξ) ∼
∑
α

1

α!
∆̃α

(x)D
(α)
x σT (x , ξ)

adasgupta@maths.iitd.ac.in (IIT, Delhi) Weighted Pseudo-differential Operators February 27, 2024 25 / 33



Theorem (Product, ADG+VK+LM+SSM)

Let m1,m2 ∈ R. Let A,B : C∞
L (Ω) → C∞

L (Ω) be continuous linear
operator such that σA ∈ Mm1

ρ,0,Λ and σB ∈ Mm2
ρ,0,Λ. Then the symbol of AB,

σAB ∈ Mm1+m2
ρ,0,Λ having asymptotic expansion

σAB(x , ξ) ∼
∑
α

1

α!

(
∆α

(x)σA(x , ξ)
)
D

(α)
x σB(x , ξ),

where the asymptotic expansion means that for every N ∈ N, we have

σAB(x , ξ)−
∑
|α|<N

1

α!

(
∆α

(x)σA(x , ξ)
)
D

(α)
x σB(x , ξ) ∈ Mm1+m2−ρN

ρ,0,Λ .
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M-Elliptic Operators

Any σ ∈ Mm
ρ,0,Λ is M-elliptic if there exists constant C > 0 and

R(> 0) ∈ R such that

|σ(x , ξ)| ≥ C (Λ(ξ))m

for |λξ| ≥ R.

Theorem (ADG+VK+LM+SSM)

Let A : C∞
L (Ω) → C∞

L (Ω) continuous linear operator such that its
L-symbol σA is M-elliptic. Then there exists a symbol σB ∈ M−m

ρ,0,Λ such
that

BA = I + R

and
AB = I + S ,

where the pseudo differential operators R, S are in OpLM
−∞.
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Minimal and Maximal Operators

Tσ : L2(Ω) → L2(Ω) is closable for σ ∈ Mm
ρ,0,λ,m > 0

Maximal Operator: g ∈ Dom(Tσ,1) and Tσ,1g = f if and only if

⟨g ,T ∗
σψ⟩ = ⟨f , ψ⟩,

where T ∗
σ is the adjoint of Tσ and ψ ∈ C∞(Ω̄).

Results: ADG+VK+LM+SSM, arxiv 2023.

For M-elliptic symbol σ ∈ Mm
ρ,0,Λ, Dom(Tσ,0) = Hm,2

L,Λ .

Tσ,0 = Tσ,1, for M-elliptic σ ∈ Mm
ρ,0,Λ, m > 0.

Suppose σ ∈ Mm
ρ,0,Λ, m > 0 be M-elliptic and is independent of x . If

λ ∈ C such that
σ(ξ) ̸= λ,

then λ ∈ ρ(Tσ,0) .
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More Results (ADG+VK+LM+SSM)

Gohberg’s lemma: Let 1 < p <∞. Assume Ω has a finite measure. Let
σ ∈ M0

ρ,0,Λ, 0 < ρ ≤ 1. Then for all compact operators K ∈ L(Lp(Ω)),

||Tσ − K ||L(Lp(Ω)) ≥ dσ := lim sup
⟨ξ⟩→∞

{
sup
x∈Ω

|σ(x , ξ)|
}
.

Compactness: Assume Ω has a finite measure. Let Tσ have symbol in
M0

ρ,0,Λ, 0 < ρ ≤ 1. Then Tσ extends to a compact operator in L2(Ω), if

and only if dσ := lim sup
⟨ξ⟩→∞

{
sup
x∈Ω

|σ(x , ξ)|
}

= 0.

Riesz Operator: Assume Ω has a finite measure. Let Tσ have symbol in
M0

ρ,0,Λ. The Tσ is a Riesz operator on Lp(Ω), 1 < p <∞ if and only if

dσ′ := lim
⟨ξ⟩→∞

{
sup
x∈Ω

|σ(x , ξ)|
}

= 0.
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More Results (ADG+VK+LM+SSM)

Functional Symbolic Calculus: Let m > 0, 0 < ρ ≤ 1 and σ ∈ Mm
ρ,0,Λ be a

L-elliptic , σ > 0. Then

B̂(x , ξ) ≡ σ(x , ξ)
1
2 := exp

(
1
2 log(σ(x , ξ))

)
∈ M

m
2
ρ,0,Λ

Gärding’s Inequality: Let Tσ : C∞
L (Ω) → D′

L(Ω) with symbol σ ∈ Mm
ρ,0,Λ,

m > 0 and 0 < ρ ≤ 1. Also assume

A(x , ξ) :=
1

2
(σ(x , ξ) + σ(x , ξ)), (x , ξ) ∈ Ω× I

satisfies
|(Λ(ξ))mA(x , ξ)−1| ≤ C0

for some C0 > 0. Then, there exists C1,C2 > 0 such that

Re(σ(x ,D)u, u) ≥ C1||u||
H

m
2 ,2

L,Λ

− C2||u||H0,2
L,Λ

holds true for every u ∈ C∞
L (Ω).
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Applications

Theorem

Let σ ∈ M2m
ρ,Λ, m > 0, be such that it satisfies the condition given in the

Gärding’s inequality. Then for all f ∈ L2(Ω) there exists λ0 ∈ R, such that
for all λ ≥ λ0,

(Tσ + λI )u = f

on Ω has a unique strong solution u ∈ L2(Ω).

Reference:

A. Dasgupta, V. Kumar, L. Mohan, and S. S. Mondal,
”Non-harmonic M-elliptic pseudo-differential operators on manifolds
with boundary” submitted. https://arxiv.org/abs/2307.10825
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